Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38488424

RESUMEN

The Chinese tallow tree (Triadica sebifera) is an economically important plant on account of its ornamental value and oil-producing seeds. Leaf colour is a key characteristic of T. sebifera, with yellow-, red- and purple-leaved varieties providing visually impressive displays during autumn. In this study, we performed metabolomic and transcriptomic analyses to gain a better understanding of the mechanisms underlying leaf colour development in purple-leaved T. sebifera at three stages during the autumnal colour transition, namely, green, hemi-purple, and purple leaves. We accordingly detected 370 flavonoid metabolites and 10 anthocyanins, among the latter of which, cyanidin-3-xyloside and peonidin-3-O-glucoside were identified as the predominant compounds in hemi-purple and purple leaves. Transcriptomic analysis revealed that structural genes associated with the anthocyanin biosynthetic pathway, chlorophyll synthesis pathway and carotenoid synthesis pathway were significantly differential expressed at the three assessed colour stages. Additionally, transcription factors associated with the MYB-bHLH-WD40 complex, including 22 R2R3-MYBs, 79 bHLHs and 44 WD40 genes, were identified as candidate regulators of the anthocyanin biosynthetic pathway. Moreover, on the basis of the identified differentially accumulated anthocyanins and key genes, we generated genetic and metabolic regulatory networks for anthocyanin biosynthesis in T. sebifera. These findings provide comprehensive information on the leaf transcriptome and three pigments of T. sebifera, thereby shedding new light on the mechanisms underlying the autumnal colouring of the leaves of this tree.


Asunto(s)
Antocianinas , Euphorbiaceae , Transcriptoma , Antocianinas/metabolismo , Clorofila , Perfilación de la Expresión Génica , Metaboloma , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Color
2.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37938892

RESUMEN

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Asunto(s)
Flores , Triticum , Triticum/metabolismo , Fotoperiodo , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
Theor Appl Genet ; 136(7): 165, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392240

RESUMEN

KEY MESSAGE: We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers. Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m2. Among them, QDGF.caas-7A is co-located with QTGW.caas-7A and can explain 39.4-64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that TaSus2-2B and Rht-B1 were candidate genes for QTGW.caas-2B and the QTL cluster (QTGW.caas-4B, QGNS.caas-4B, and QSN.caas-4B), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.


Asunto(s)
Grano Comestible , Triticum , Grano Comestible/genética , Triticum/genética , Fitomejoramiento , Productos Agrícolas , Sitios de Carácter Cuantitativo
4.
Plant Biotechnol J ; 21(10): 1952-1965, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381172

RESUMEN

High-molecular-weight glutenin subunits (HMW-GS), a major component of seed storage proteins (SSP) in wheat, largely determine processing quality. HMW-GS encoded by GLU-1 loci are mainly controlled at the transcriptional level by interactions between cis-elements and transcription factors (TFs). We previously identified a conserved cis-regulatory module CCRM1-1 as the most essential cis-element for Glu-1 endosperm-specific high expression. However, the TFs targeting CCRM1-1 remained unknown. Here, we built the first DNA pull-down plus liquid chromatography-mass spectrometry platform in wheat and identified 31 TFs interacting with CCRM1-1. TaB3-2A1 as proof of concept was confirmed to bind to CCRM1-1 by yeast one hybrid and electrophoretic mobility shift assays. Transactivation experiments demonstrated that TaB3-2A1 repressed CCRM1-1-driven transcription activity. TaB3-2A1 overexpression significantly reduced HMW-GS and other SSP, but enhanced starch content. Transcriptome analyses confirmed that enhanced expression of TaB3-2A1 down-regulated SSP genes and up-regulated starch synthesis-related genes, such as TaAGPL3, TaAGPS2, TaGBSSI, TaSUS1 and TaSUS5, suggesting that it is an integrator modulating the balance of carbon and nitrogen metabolism. TaB3-2A1 also had significant effects on agronomic traits, including heading date, plant height and grain weight. We identified two major haplotypes of TaB3-2A1 and found that TaB3-2A1-Hap1 conferred lower seed protein content, but higher starch content, plant height and grain weight than TaB3-2A1-Hap2 and was subjected to positive selection in a panel of elite wheat cultivars. These findings provide a high-efficiency tool to detect TFs binding to targeted promoters, considerable gene resources for dissecting regulatory mechanisms underlying Glu-1 expression, and a useful gene for wheat improvement.


Asunto(s)
Proteoma , Triticum , Triticum/genética , Triticum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glútenes/genética , Regiones Promotoras Genéticas , Grano Comestible/genética , Almidón/metabolismo , Peso Molecular
5.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039060

RESUMEN

The utilization of reduced plant height genes Rht-B1b and Rht-D1b, encoding homeologous DELLA proteins, led to the wheat Green Revolution (GR). However, the specific functions of GR genes in yield determination and the underlying regulatory mechanisms remained unknown. Here, we validated that Rht-B1b, as a representative of GR genes, affects plant architecture and yield component traits. Upregulation of Rht-B1b reduced plant height, leaf size and grain weight, but increased tiller number, tiller angle, spike number per unit area, and grain number per spike. Dynamic investigations showed that Rht-B1b increased spike number by improving tillering initiation rather than outgrowth, and enhanced grain number by promoting floret fertility. Rht-B1b reduced plant height by reducing cell size in the internodes, and reduced grain size or weight by decreasing cell number in the pericarp. Transcriptome analyses uncovered that Rht-B1b regulates many homologs of previously reported key genes for given traits and several putative integrators for different traits. These findings specify the pleiotropic functions of Rht-B1b in improving yield and provide new insights into the regulatory mechanisms underlying plant morphogenesis and yield formation.


Asunto(s)
Genes de Plantas , Triticum , Alelos , Fenotipo , Grano Comestible/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Genet Genomics ; 50(11): 835-845, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36907353

RESUMEN

Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Fitomejoramiento , Grano Comestible/genética
7.
Theor Appl Genet ; 136(3): 62, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36914894

RESUMEN

KEY MESSAGE: We fine mapped RHT26 for plant height in wheat, confirmed its genetic effects in a panel of wheat cultivars and predicted candidate genes. Development of wheat cultivars with appropriate plant height (PH) is an important goal in breeding. Utilization of semi-dwarfing genes Rht-B1b and Rht-D1b triggered wheat Green Resolution in the 1960s. Since these genes also bring unfavorable features, such as reduced coleoptile length and grain weight, it is necessary to identify alternative reduced height genes without yield penalty. Here we constructed a high-density genetic map of a recombinant inbred line population derived from the cross of Zhongmai175 and Lunxuan987 and detected a stable genetic locus for PH, designated RHT26, on chromosome arm 3DL in all of six environments, accounting for 6.8-14.0% of the phenotypic variances. RHT26 was delimited to an approximate 1.4 Mb physical interval (517.1-518.5 Mb) using secondary mapping populations derived from 22 heterozygous recombinant plants and 24 kompetitive allele-specific PCR markers. Eleven high-confidence genes were annotated in the physical interval according to the Chinese Spring reference genome, and four of them were predicted as candidates for RHT26 based on genome and transcriptome sequencing analyses. We also confirmed that RHT26 had significant effects on PH, but not grain yield in a panel of wheat cultivars; its dwarfing allele has been frequently used in wheat breeding. These findings lay a sound foundation for map-based cloning of RHT26 and provide a breeding-applicable tool for marker-assisted selection.


Asunto(s)
Fitomejoramiento , Triticum , Mapeo Cromosómico , Triticum/genética , Genes de Plantas , Cotiledón , Grano Comestible/genética , Fenotipo
8.
Insect Biochem Mol Biol ; 152: 103893, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513274

RESUMEN

Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.


Asunto(s)
Hemípteros , Muda , Animales , Tripsina/metabolismo , Muda/genética , Hemípteros/metabolismo , Serina Proteasas/metabolismo , Interferencia de ARN , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Proteínas de Insectos/metabolismo
9.
Plant Physiol Biochem ; 186: 322-333, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932656

RESUMEN

Acer rubrum L. is one of the most prevalent ornamental species of the genus Acer, due to its straight and tall stems and beautiful leaf colors. For this study, the Oxford Nanopore platform and Hi-C technology were employed to obtain a chromosome-scale genome for A. rubrum. The genome size of A. rubrum was 1.69 Gb with an N50 of 549.44 Kb, and a total of 39 pseudochromosomes were generated with a 99.61% genome. The A. rubrum genome was predicted to have 64644 genes, of which 97.34% were functionally annotated. Genome annotation identified 67.14% as the transposable element (TE) repeat sequence, with long terminal repeats (LTR) being the richest (55.68%). Genome evolution analysis indicated that A. rubrum diverged from A. yangbiense ∼6.34 million years ago. We identified 13 genes related to pigment synthesis in A. rubrum leaves, where the expressions of four ArF3'H genes were consistent with the synthesis of cyanidin (a key pigment) in red leaves. Correlation analysis verified that the pigmentation of A. rubrum leaves was under the coordinated regulation of non-structural carbohydrates and hormones. The genomic sequence of A. rubrum will facilitate genomic breeding research for this species, while providing the valuable utilization of Aceraceae resources.


Asunto(s)
Acer , Acer/genética , Cromosomas , Genoma , Pigmentación/genética , Fitomejoramiento
10.
Theor Appl Genet ; 135(9): 3237-3246, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35904627

RESUMEN

KEY MESSAGE: We fine mapped QTL QTKW.caas-5DL for thousand kernel weight in wheat, predicted candidate genes and developed a breeding-applicable marker. Thousand kernel weight (TKW) is an important yield component trait in wheat, and identification of the underlying genetic loci is helpful for yield improvement. We previously identified a stable quantitative trait locus (QTL) QTKW.caas-5DL for TKW in a Doumai/Shi4185 recombinant inbred line (RIL) population. Here we performed fine mapping of QTKW.caas-5DL using secondary populations derived from 15 heterozygous recombinants and delimited the QTL to an approximate 3.9 Mb physical interval from 409.9 to 413.8 Mb according to the Chinese Spring (CS) reference genome. Analysis of genomic synteny showed that annotated genes in the physical interval had high collinearity among CS and eight other wheat genomes. Seven genes with sequence variation and/or differential expression between parents were predicted as candidates for QTKW.caas-5DL based on whole-genome resequencing and transcriptome assays. A kompetitive allele-specific PCR (KASP) marker for QTKW.caas-5DL was developed, and genotyping confirmed a significant association with TKW but not with other yield component traits in a panel of elite wheat cultivars. The superior allele of QTKW.caas-5DL was frequent in a panel of cultivars, suggesting that it had undergone positive selection. These findings not only lay a foundation for map-based cloning of QTKW.caas-5DL but also provide an efficient tool for marker-assisted selection.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Triticum , Cromosomas , Grano Comestible/genética , Fenotipo , Fitomejoramiento , Triticum/genética
11.
Insect Sci ; 29(2): 363-378, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34498803

RESUMEN

Many holo- and hemimetabolous insects enhance their eggshells during embryogenesis by forming a serosal cuticle (SC). To date, scholarly understanding of the SC composition and SC-related gene functions has been limited, especially for hemimetabolous insects. In this study, we initially performed transmission electron microscopic (TEM) observation and chitin staining of the SC in Nilaparvata lugens, a hemimetabolous rice pest known as the brown planthopper (BPH). We confirmed that the SC was a chitin-rich lamellar structure deposited gradually during the early embryogenesis. Parental RNA interference (RNAi) against Nilaparvata lugens chitin synthase 1 (NlCHS1) in newly emerged and matured females resulted in decreases of egg hatchability by 100% and 76%, respectively. Ultrastructural analyses revealed loss of the lamellar structure of the SC in dsNlCHS1-treated eggs. According to temporal expression profiles, five cuticle protein coding genes, NlugCpr1/2/3/8/90, were specifically or highly expressed during the SC formation period, and NlugCpr1/2/3/90 were further detected in 72 h eggshells extract by ultra-performance liquid chromatography-tandem mass spectrometry/mass spectrometry. NlugCpr2/3/90 were likely three SC-specific cuticle proteins. TEM observations of the SC following parental RNAi against NlugCpr1/2/3/8/90 demonstrated that NlugCpr3/8/90 were essential for SC formation. The study provided an understanding of the SC formation process and SC-related cuticle proteins in BPHs, which offer potential targets for pest control in the egg stage as well.


Asunto(s)
Quitina Sintasa , Hemípteros , Animales , Quitina Sintasa/genética , Cáscara de Huevo , Desarrollo Embrionario , Femenino , Hemípteros/genética , Interferencia de ARN
12.
Front Plant Sci ; 12: 749206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721477

RESUMEN

Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6-18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.

13.
Insect Biochem Mol Biol ; 131: 103553, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33582278

RESUMEN

CCHamides are newly identified insect neuropeptides, which are widely occurring in most insects. However, our knowledge about their signaling characteristics and physiological roles is still limited. Here, we cloned two full-length cDNAs encoding putative CCHamide receptors, Bombyx neuropeptide GPCR A14 (BNGR-A14) and -A15 (BNGR-A15), from the brain of B. mori larvae. Characterization of signaling indicated that Bombyx CCHamide-1 and CCHamide-2 are specific endogenous ligands for BNGR-A15 and BNGR-A14, respectively. Further functional assays combined with specific inhibitors demonstrated that upon activation by CCHamide-2, BNGR-A14 elicited significant increases in CRE-driven luciferase activity, intracellular Ca2+ mobilization and ERK1/2 phosphorylation in a Gq inhibitor-sensitive manner, while BNGR-A15 was activated by CCHamide-1, thus leading to intracellular accumulation of cAMP, Ca2+ mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Based on these findings, we designated the receptors BNGR-A15 and -A14 as Bommo-CCHaR-1 and -2, respectively. In addition, our results showed that CCHamides are considered to require intrachain disulfide bonds to activate their respective receptor in the physiological concentration range. Moreover, quantitative RT-PCR analysis revealed that CCHamide-1 is more likely to serve as a brain-gut peptide to regulate feeding behavior and growth through BNGR-A15, whereas the CCHamide-2 signaling system might play an important role in the control of multiple physiological processes. Our findings provide in-depth information on CCHamide-1 and -2-mediated signaling, facilitating further elucidation of their endocrinological roles in the regulation of fundamental physiological processes.


Asunto(s)
Bombyx/fisiología , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conducta Alimentaria/fisiología , Proteínas de Insectos/metabolismo , Insectos/fisiología , Receptores de Neuropéptido/metabolismo , Transducción de Señal
14.
New Phytol ; 230(5): 1731-1745, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33586137

RESUMEN

Timely flowering is essential for optimum crop reproduction and yield. To determine the best flowering-time genes (FTGs) relevant to local adaptation and breeding, it is essential to compare the interspecific genetic architecture of flowering in response to light and temperature, the two most important environmental cues in crop breeding. However, the conservation and variations of FTGs across species lack systematic dissection. This review summarizes current knowledge on the genetic architectures underlying light and temperature-mediated flowering initiation in Arabidopsis, rice, and temperate cereals. Extensive comparative analyses show that most FTGs are conserved, whereas functional variations in FTGs may be species specific and confer local adaptation in different species. To explore evolutionary dynamics underpinning the conservation and variations in FTGs, domestication and selection of some key FTGs are further dissected. Based on our analyses of genetic control of flowering time, a number of key issues are highlighted. Strategies for modulation of flowering behavior in crop breeding are also discussed. The resultant resources provide a wealth of reference information to uncover molecular mechanisms of flowering in plants and achieve genetic improvement in crops.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Grano Comestible/genética , Flores/genética , Oryza/genética , Fotoperiodo , Fitomejoramiento , Reproducción , Temperatura
15.
New Phytol ; 231(2): 834-848, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769506

RESUMEN

TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Triticum , Flores/genética , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
16.
Plant J ; 102(2): 262-275, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31782581

RESUMEN

FLOWERING LOCUS T (FT) protein, physiologically florigen, has been identified as a system integrator of numerous flowering time pathways in many studies, and its homologs are found throughout the plant lineage. It is important to uncover how precisely florigenic homologs contribute to flowering initiation and how these factors interact genetically. Here we dissected the function of Brachypodium FT orthologs BdFTL1 and BdFTL2 using overexpression and gene-editing experiments. Transgenic assays showed that both BdFTL1 and BdFTL2 could promote flowering, whereas BdFTL2 was essential for flowering initiation. Notably, BdFTL1 is subject to alternative splicing (AS), and its transcriptional level and AS are significantly affected by BdFTL2. Additionally, BdFTL2 could bind with the PHD-containing protein BdES43, an H3K4me3 reader. Furthermore, BdES43 was antagonistic to BdFTL2 in flowering initiation in a transcription-dependent manner and significantly affected BdFTL1 expression. BdFTL2, BdES43 and H3K4me3 also had highly similar distribution patterns within the BdFTL1 locus, indicating their interplay in regulating target genes. Taken together, florigen BdFTL2 functions as a potential epigenetic effector of BdFTL1 by interacting with a BdES43-H3K4me3 complex. This finding provides an additional insight for the regulatory mechanism underlying the multifaceted roles of florigen.


Asunto(s)
Brachypodium/genética , Florigena/metabolismo , Histonas/metabolismo , Brachypodium/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Tiempo
17.
J Insect Physiol ; 116: 90-99, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31063731

RESUMEN

Using the mass spectrometry analysis of cuticle casts of brown planthopper (BPH, Nilaparvata lugens) and transcriptome analysis of BPH tissues, we identified a gigantic gene (50,922 bp, 16,973 aa) tentatively called Nlegf-like. Multiple transcripts were found. Nlegf-like encodes an integral membrane protein of 16,973 amino acid residues with 260 EGF-like repeats and 16 Ca2+-binding EGF repeats type (cbEGFs) in the extracellular portion. Nlegf-like was highly expressed in the integument and tended to peak at the middle stage or late stage of each nymph instar. Phylogenetic analysis showed this gene is conserved in many other insects. Different double-stranded RNA-mediated RNA interference targeting eight different regions of the Nlegf-like gene resulted in abnormal cuticle formation or molting and lethal phenotypes. Transmission electron microscopy revealed that the newly formed endocuticle was significantly thinner for RNAi-treated BPHs with phenotype of contracted abdomen, or the old cuticle could not be digested sufficiently for those with phenotype of slender body shape or died with molting difficulty when compared with the control group. We suggest that the Nlegf-like is crucial for metabolism of the cuticle in BPH molting.


Asunto(s)
Factor de Crecimiento Epidérmico/genética , Hemípteros/genética , Proteínas de Insectos/genética , Muda/genética , Secuencia de Aminoácidos , Animales , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/metabolismo , Filogenia , Interferencia de ARN , ARN Bicatenario/metabolismo , Alineación de Secuencia
18.
Insect Biochem Mol Biol ; 100: 1-9, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885440

RESUMEN

Using transcriptome analysis of tissues of the brown planthopper (BPH), Nilaparvata lugens, we identified a gene tentatively designated NlCP21.92 that was expressed at high levels in the integument. Spatiotemporal expression profiling with quantitative PCR and Western blotting verified its integument-specific expression and showed periodic expression during molting. The open reading frame was GC-rich and encoded a hydrophobic polypeptide. The polypeptide contained AAPA/V repeat motifs and other sequence features similar to several reported cuticular proteins but lacked an R&R consensus and other chitin-binding domains. Double-stranded RNA-mediated RNA interference of the NlCP21.92 resulted in abnormal and lethal morphological phenotypes, and transmission electron microscopy revealed the corresponding ultrastructural defects. Immunohistochemical staining demonstrated that the NlCP21.92 protein was primarily located in the procuticle. Our results suggest that NlCP21.92 is a novel ungrouped cuticular protein essential for normal endocuticle formation.


Asunto(s)
Hemípteros/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Hemípteros/genética , Hemípteros/ultraestructura , Proteínas de Insectos/genética , Masculino , Fenotipo
19.
Ying Yong Sheng Tai Xue Bao ; 22(9): 2413-8, 2011 Sep.
Artículo en Chino | MEDLINE | ID: mdl-22126056

RESUMEN

A Beauveria bassiana strain Bb21 was isolated from naturally infected green peach aphid Myzus persicae (Hemiptera: Aphididae). The effects of the strain on M. persicae and its two predaceous natural enemies Chrysoperla carnea (Neuroptera: Chrysopidae) and Harmonia axyridis (Coleoptera: Coccinellidae) were investigated under laboratory conditions. Bb21 had strong pathogenicity to M. persicae, with the LD50 of 97 conidia x mm(-2) (45-191, 95% confidence interval), but was less pathogenic to the second instar nymph of C. carnea, with the LD50 of 1089 conidia x mm(-2). The LD50 for C. carnea was 10.2 times higher than that for M. persicae. The pathogenicity of Bb21 to H. axyridis was very weak, with a low infection rate of 13% even at a high concentration 5 x 10(8) conidia x mL(-1). The Bb21 at low conidia concentration had less effect on the developmental period and fecundity of the two predaceous natural enemies. However, when applied at the high concentration 5 x 10(8) spores x mL(-1), Bb21 shortened the larval stage of H. axyridis averagely by 1.4 d and decreased the adult emergence rate and fecundity by 33% and 14%, respectively, and shortened the larval stage of C. carnea averagely by 0.7 d and decreased the adult emergence rate and fecundity by 24% and 11%, respectively. Since the LD50 for green peach aphid was much lower than that for the two predaceous natural enemies, and had very low effect on the adult emergence rate and fecundity of the two predators at the concentration recommended for field spray, Bb21 could be applied as a biocontrol agent of M. persicae in the integrated management of pernicious organisms.


Asunto(s)
Áfidos/microbiología , Áfidos/fisiología , Beauveria/fisiología , Control Biológico de Vectores/métodos , Conducta Predatoria/fisiología , Animales , Escarabajos/fisiología , Prunus/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...